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Abstract
Silene ciliata (Caryophyllaceae) is a key species to test evolutionary hypotheses in a global warming
context. The recent advances in Next Generation Sequencing technologies can help in providing
clues about climate-mediated local adaptation. In the present study, we analysed the full transcrip-
tome of six individuals of S. ciliata from Central Spain, by aligning it with the transcriptome of S.
latifolia. We aimed (a) to identify Single Nucleotide Polymorphisms (SNPs) in the transcriptome
of the species, (b) to describe the biological function of the polymorphic genes expressed and
(c) to identify loci that may be involved in local adaptation processes at optimal and marginal po-
pulations of the species. We identified a total of 147,118 SNPs distributed throughout 12,688 se-
quences. The number of polymorphic sequences annotated was 8023. One hundred thirty
sequences containing polymorphisms strongly associated with optimal and marginal conditions
were selected. Gene ontology searches were successful for 118, and many of these were related
to responses to stress (n = 19) and abiotic stimulus (n = 16). Genomic data generated provide a start-
ing point for further research on the identification of candidate genes related to local adaptation and
other processes in the species.
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Introduction

Silene L. (Caryophyllaceae) is a key plant genus for studying
crucial questions interrelating ecology and evolution
(Bernasconi et al., 2009). Silene ciliata Pourret is a
Mediterranean alpine plant that occurs in alpine pastures
(Escudero et al., 2005) protected by the European Habitats
Directive (Council Directive 92/43/EEC, 1992). The species
is threatened by global warming (Giménez-Benavides et al.,
2007, 2018) and has been included in catalogues of

threatened species from different countries and regions
(Dray, 1985; Fernández et al., 2007; Sanz et al., 2010;
Légifrance, 2019). The seedling stage of this species experi-
ences great mortality and it is, thus, subjected to strong
selective pressure. This pressure may be qualitatively differ-
ent between environmental conditions that are most
commonly found at the species populations (optimal condi-
tions) and those found only at the extreme of the species
ecological range (marginal conditions). Previous studies
have shown local adaptation patterns in optimal andmargin-
al populations (Giménez-Benavides et al., 2007, 2018;
García-Fernández et al., 2015). Thus, S. ciliata is a key expo-
nent to evaluate Mediterranean alpine species responses to*Corresponding author. E-mail: carlos.lara.romero@gmail.com
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oncoming global warming and corroborate evolutionary hy-
potheses (e.g. García-Fernández et al., 2015; Kyrkou et al.,
2015; Lara-Romero et al., 2016). Accordingly, there is great
interest in developing genomic resources for the species,
which would improve the understanding of the genetics of
adaptation in Mediterranean alpine environments.

In this context, we carried out a transcriptomic study of
seedlings of S. ciliata, with the following objectives: (1) to
identify Single Nucleotide Polymorphisms (SNPs) in the
transcriptome of the species, (2) to describe the biological
function of the polymorphic genes expressed, (3) to exam-
ine diversity patterns of potential adaptive value in optimal
and marginal populations of the species and identify loci
that may be involved in local adaptation processes.

Experimental

We used RNeasy Plant Mini-Kit (QIAGEN) to extract and
isolate RNA from six seedlings grown under controlled con-
ditions, one for each of the six studied populations located
in Central Spain. Three populations were located at the
high edge and the other three at the low edge of the species
elevational range (Table 1). The high and low-elevation
edges represent optimum and marginal (warmer and drier)
environmental conditions for the species, respectively. The
quality of RNA was evaluated with a Qubit (Invitrogen,
Carlsbad, CA, USA). One sequencing run was carried out
in an Illumina platform through 100 bp paired-end reads.
Trimming was carried out with software Trimmomatic
(Bolger et al., 2014). Then, S. ciliata transcriptome was
aligned with the genome of Silene latifolia (GenBank
reference: GCA_900095335.1) using BWA software (Li
and Durbin, 2010).

SNPs were identified using Reads2snp (Gayral et al.,
2013) and filtered with VCFtools 4.1 (Danecek et al.,
2011). Only, biallelic SNPs with no missing data and at
least seven reads per genotype were retained to prevent
the inclusion of false positive SNPs (Swarts et al., 2014;
Marano et al., 2017). Paralogous and singleton SNPs were
further deleted. VCFtools was also used to estimate the
genetic variation in the whole genome. Blastx software
(Altschul et al., 1990) and the database of SWISS-PROT
(Bairoch and Apweiler, 2000) were used to annotate the
biological function (i.e. gene ontology terms) of the se-
quences carrying SNPs. We applied two different measures
to detect candidate SNPs with unusually high-allele fre-
quency differentiation between elevations. We first calcu-
lated allele frequency differences (AFDs) between low
and high elevations at the individual allele level (Turner
et al., 2010; Stölting et al., 2015). SNPs were considered
unusually divergent if AFDs were ≥3 SDs higher than the
genome-wide average. Second, following Muller et al.,
2011, we computed the dispersion of each allele (m), Ta
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which is the average elevational distance of an allele copy
to the average elevation of all copies of that allele (β). Then,
1000 permutations of allele copies among all studied geo-
graphical locations were performed, to subsequently esti-
mate m and β in each of the permutations. SNPs were
considered unusually clustered if m were ≥2 SDs higher
than the permutation average. We performed a GO term
enrichment analyses using Fisher’s exact tests to assess
whether sequences containing selected SNPs were en-
riched in a biological function.

Discussion

Eighty percent of RNA sequences were conserved after
trimming from an initial average of 30,000,698 ± 3,715,368
sequences. The percentage of sequences mapped against
the reference genome ranged between 37.9 and 45
(Table 1). After filtering, we identified 147,118 SNPs distrib-
uted throughout 12,688 complete and partial sequences
(SNPs per sequence: mean ± SD = 11.6 ± 14.51). Posterior
probability per SNP was higher than 0.985 for all SNPs
(mean ± SD = 0.9995 ± 0.0011). In total, 8023 polymorphic
sequences were annotated. Their most common function
was related to cellular processes, metabolic processes
and biological regulation (Fig. 1, Table S1). Annotated
sequences were deposited in the GenBank (BioProject
ID: PRJNA528948). This extensive dataset provides a
novel genomic resource for S. ciliata, and a significant step
towards a better understanding of its genetics.

According to identified SNPs, individuals from high and
low elevation presented similar values of genetic diversity
(Table 1, all Wilcoxon rank tests: P≥ 0.2). Fi was positive in
five out of six plants (Table 1) and did not differ between
elevations (Wilcoxon rank test: P = 0.7). Previous studies

on S. ciliata using neutral markers also found similar
estimates of genetic diversity across elevations (García-
Fernández et al., 2012; Lara-Romero et al., 2016). Overall,
775 sequences carrying SNPs associated with elevation
were selected by at least one of the implemented ap-
proaches, but both shared only 130 of them. Almost 90%
(n = 118) of them were successfully annotated (Table S1),
but they were not significantly enriched in any biological
process after FDR correction. However, about 15% of
these sequences were associated with responses to stress
(n = 19) and abiotic stimulus (n = 16) (Table S2). This is par-
ticularly interesting for the identification of loci related to
adaptation to climate change (Giménez-Benavides et al.,
2007, 2018), and improving the understanding of adapta-
tion processes in the species.

Supplementary material

The supplementary material for this article can be found at
https://doi.org/10.1017/S1479262119000157
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